Monday, 23 September 2013

Oil Industry and Household Stoves Speed Arctic Thaw


The new study, published in the journalAtmospheric Chemistry and Physics by researchers at IIASA and in Norway, Finland, and Russia, finds that gas flaring from oil extraction in the Arctic accounts for 42% of the black carbon concentrations in the Arctic, with even higher levels during certain times of the year. In the month of March for example, the study showed that flaring accounts for more than half of black carbon concentrations near the surface. Globally, in contrast, gas flaring accounts for only 3% of black carbon emissions.
The researchers also found that residential combustion emissions play a greater role in black carbon pollution than previously estimated, after they incorporated seasonal differences in emissions into the model.
To conduct the study, researchers used particle dispersion model FLEXPART driven by emissions estimated with the IIASA's GAINS model, combined with measurements of black carbon in the Arctic, made during a research cruise in the Arctic Ocean and research stations located at 6 sites in Alaska, Canada, Finland, Norway, and Greenland.
In the new study, the researchers for the first time included temporal distribution of black carbon emissions from residential combustion. "Understanding how much is emitted when during the year is something that has to be included better in our regional models," says IIASA researcher Zbigniew Klimont, who worked on the study. It also incorporated detailed regional data on the location of gas flaring emissions, improving upon previous estimates that either ignored them entirely or used only regional averages. These improved emission estimates and their temporal resolution allows for a better reproduction of seasonal variability in observed black carbon concentrations.
"We are seeing more and more oil being extracted further and further north. And the proximity of emissions from gas flaring matters," says Klimont. Black carbon, or soot, contributes to warming in the Arctic by darkening the surface of snow or ice and causing it to melt faster, or absorbing more heat in the air.
The warming effect of black carbon on ice and snow has been suggested as one factor contributing to the relatively fast warming of the Arctic compared to the rest of the world. Arctic sea ice has declined faster than climate models predict, hitting new record lows in 2007 and 2012

Friday, 20 September 2013

Soil Carbon 'Blowing in the Wind'

Top ground is rich in nutritional value and as well as but is progressively being offered away by actions such as the 'Red Dawn' in Modern Australia during 2009.
When breeze raises as well as dirt into the weather it changes the amount and location of ground as well as.
Some as well as drops back to the ground while some results in Modern Australia or finishes up in the sea.
CSIRO analysis researcher Dr Adrian Chapel and an worldwide team of experts in breeze break down and dirt exhaust lately measured the level of these as well as dirt pollutants.
"Carbon saved in our dirt helps maintain place growth. Our acting reveals that an incredible number of loads of dirt and as well as are ruining away, and it is unclear where all that finishes up," Dr Chappell said.
"We need to understand the effect of this dirt as well as pattern to create more precise nationwide and worldwide reports of as well as levels out and to be able to get ready for life in a modifying environment.
"Australia's as well as records, and even worldwide as well as records, have not yet taken breeze or water break down into consideration and when this happens it could have significant effects on how we handle our scenery. While ground natural as well as lost through dirt is not a significant factor to Australia's total pollutants, it is a significant component in our difficult ground health."
Carbon is an essential component for the healthy dirt which underpin Australia's ability to generate enough food to nourish 60 thousand people.
Understanding the activity of as well as through the scenery is a requirement if we are to enhance the quality of our dirt and support farm owners and area supervisors to store as well as.
This is not an issue for Modern Australia alone. Other nations will also need to know the destiny of their wind-blown carbon; nations like the USA and Chinese suppliers with larger dirt pollutants will likely face similar difficulties when such as breeze carried dirt in their as well as bookkeeping.
With the regularity and concentration of dirt stormy weather likely to improve in Modern Australia  the effect of breeze break down would also improve.
This redistribution of as well as needs to be better recognized so we can enhance our area management methods to better secure our dirt.
Recent analysis approximated that the 'Red Dawn' dirt surprise that approved over the southern shore of Modern Australia on 23 Sept 2009 cost the economic system of New Southern Wales A$300 thousand, mainly for household cleaning and associated actions.

Carbon Farming Schemes Should Consider Multiple Cobenefits




Brenda B. Lin of the Modern australia Globe Medical care and Professional Research Organization and her co-workers examined several different methods that individuals have tried as well as farming. Simple maximization of advantage can cause landholders obtaining as well as market segments to make monoculture plants, which do not support bio-diversity and provide few ecological advantages to regional population. But solutions such as improving products of plants on plants, agroforestry -- developing plants into farming methods -- and revegetation of little or plants place can sequester as well as while also developing comprehensive variety of ecological advantages.
These advantages may involve, for example, reduced contamination result and break down, and better wind protection, insect management, and pollination. What is more, methods that have regional contribution and buy-in are more likely to be efficient over the long run, because they can draw on regional details about plants likely to be successful and will remain well-known. Lin and her co-workers wish planners of as well as farming methods to move beyond a carbon-only focus and consider cobenefits of revegetation, while such as regional population, not just individual landowners, in strategy decisions

Thursday, 27 June 2013

A Curious Cold Layer in the Atmosphere of Venus

The planet Venus is well known for its thick, carbon dioxide atmosphere and oven-hot surface, and as a result is often portrayed as Earth's inhospitable evil twin.
But in a new analysis based on five years of observations using ESA's Venus Express, scientists have uncovered a very chilly layer at temperatures of around -175ºC in the atmosphere 125 km above the planet's surface.
The curious cold layer is far frostier than any part of Earth's atmosphere, for example, despite Venus being much closer to the Sun.
The discovery was made by watching as light from the Sun filtered through the atmosphere to reveal the concentration of carbon dioxide gas molecules at various altitudes along the terminator -- the dividing line between the day and night sides of the planet.
Armed with information about the concentration of carbon dioxide and combined with data on atmospheric pressure at each height, scientists could then calculate the corresponding temperatures.
"Since the temperature at some heights dips below the freezing temperature of carbon dioxide, we suspect that carbon dioxide ice might form there," says Arnaud Mahieux of the Belgian Institute for Space Aeronomy and lead author of the paper reporting the results in the Journal of Geophysical Research.
Clouds of small carbon dioxide ice or snow particles should be very reflective, perhaps leading to brighter than normal sunlight layers in the atmosphere.
"However, although Venus Express indeed occasionally observes very bright regions in the Venusian atmosphere that could be explained by ice, they could also be caused by other atmospheric disturbances, so we need to be cautious," says Dr Mahieux.
The study also found that the cold layer at the terminator is sandwiched between two comparatively warmer layers.
"The temperature profiles on the hot dayside and cool night side at altitudes above 120 km are extremely different, so at the terminator we are in a regime of transition with effects coming from both sides.
"The night side may be playing a greater role at one given altitude and the dayside might be playing a larger role at other altitudes."
Similar temperature profiles along the terminator have been derived from other Venus Express datasets, including measurements taken during the transit of Venus earlier this year.
Models are able to predict the observed profiles, but further confirmation will be provided by examining the role played by other atmospheric species, such as carbon monoxide, nitrogen and oxygen, which are more dominant than carbon dioxide at high altitudes.
"The finding is very new and we still need to think about and understand what the implications will be," says Håkan Svedhem, ESA's Venus Express project scientist.
"But it is special, as we do not see a similar temperature profile along the terminator in the atmospheres of Earth or Mars, which have different chemical compositions and temperature conditions."

Farming Carbon: Study Reveals Potent Carbon-Storage Potential of Human-Made Wetlands

Important as these storage functions of wetlands are, however, another critical one is being overlooked, says Bill Mitsch, director of the Everglades Wetland Research Park at Florida Gulf Coast University and an emeritus professor at Ohio State University: Wetlands also excel at pulling carbon dioxide out of the air and holding it long-term in soil.
Writing in the July-August issue of theJournal of Environmental Quality, Mitsch and co-author Blanca Bernal report that two 15-year-old constructed marshes in Ohio accumulated soil carbon at an average annual rate of 2150 pounds per acre -- or just over one ton of carbon per acre per year.
The rate was 70% faster than a natural, "control" wetland in the area and 26% faster than the two were adding soil carbon five years ago. And by year 15, each wetland had a soil carbon pool of more than 30,000 pounds per acre, an amount equaling or exceeding the carbon stored by forests and farmlands.
What this suggests, Mitsch says, is that researchers and land managers shouldn't ignore restored and human-made wetlands as they look for places to store, or "sequester," carbon long-term. For more than a decade, for example, scientists have been studying the potential of no-tillage, planting of pastures, and other farm practices to store carbon in agricultural lands, which cover roughly one-third of Earth's land area.
Yet, when created wetlands are discussed in agricultural circles, it's almost always in the context of water quality. "So, what I'm saying is: let's add carbon to the list," Mitsch says. "If you happen to build a wetland to remove nitrogen, for example, then once you have it, it's probably accumulating carbon, too."
In fact, wetlands in agricultural landscapes may sequester carbon very quickly, because high-nutrient conditions promote the growth of cattail, reeds, and other wetland "big boys" that produce a lot of plant biomass and carbon, Mitsch says. Once carbon ends up in wetland soil, it can also remain there for hundreds to thousands of years because of water-logged conditions that inhibit microbial decomposition.
"And carbon is a big deal -- any carbon sinks that we find we should be protecting," Mitsch says. "Then we're going even further by saying: We've lost half of our wetlands in the United States, so let's not only protect the wetlands we have remaining but also build some more."
At the same time, he acknowledges that wetlands emit the powerful greenhouse gas (GHG), methane, leading some to argue that wetlands shouldn't be created as a means to sequester carbon and mitigate climate change. But in a new analysis that modeled carbon fluxes over 100 years from the two constructed Ohio marshes and 19 other wetlands worldwide, Mitsch, Bernal, and others demonstrated that most wetlands are net carbon sinks, even when methane emissions are factored in. And among the best sinks were the wetlands in Ohio, possibly due to flow-through conditions that promoted rapid carbon storage while minimizing methane losses, the authors hypothesize.
The concerns about methane emissions and even his own promising findings point to something else, Mitsch cautions: It's easy to undervalue wetlands if we become too focused on just one of their aspects -- such as whether they're net sinks or sources of GHGs. Instead, people should remember everything wetlands do.
"We know they're great for critters and for habitat, that's always been true. Then we found out they cleaned up water, and could protect against floods and storms," he says. "And now we're seeing that they're very important for retaining carbon. So they're multidimensional systems -- even though we as people tend to look at things one at a time."

Wednesday, 26 June 2013

Carbon Buried in the Soil Rises Again

While earlier studies have found that erosion can bury carbon in the soil, acting as a carbon sink, or storage, the new study published this week in the journal Proceedings of the National Academy of Sciences found that part of that sink is only temporary.
"It's all part of figuring out the global carbon cycle," said co-author Johan Six, professor of plant sciences at UC Davis. "Where are the sources, and where are the sinks? Erosion is in some ways a sink, but, as we found out, it can also become a source."
The researchers estimated that roughly half of the carbon buried in soil by erosion will be re-released into the atmosphere within about 500 years, and possibly faster due to climate change. Climate change can speed the rate of decomposition, aiding the release of the buried carbon.
As a case study, the researchers used radiocarbon and optical dating to calculate the amount of carbon emissions captured in soils and released to the atmosphere during the past 6,000 years along the Dijle River in Belgium.
The study's long time scope -- from 4000 BC to AD 2000 -- allowed the researchers to notice the gradual reintroduction of buried carbon to the atmosphere. Significant agricultural land conversion -- historically the largest source of global erosion -- began primarily in the past 150 years, well under the researchers' time frame of 500 years. Therefore, most carbon sequestered in the soil during the past 150 years of agricultural history has not been released yet but may become a significant carbon source in the future, with implications for soil management, the study said.
"Our results showed that half of the carbon initially present in the soil and vegetation was lost to the atmosphere as a result of agricultural conversion," said study co-author Gert Verstraeten, a professor at KU Leaven, Belgium.
Six noted that erosion could be minimized by no-till and low-till agricultural methods, as well as by cover cropping, which can ensure that soil is not left bare.
"We need to know where and how much carbon is being released or captured in order to develop sensible and cost-effective measures to curb climate change," said lead author, Kristof Van Oost, of the Universite catholique de Louvain in Belgium.

Tuesday, 25 June 2013

Capturing Carbon With Clever Trapdoors

The quest to capture carbon dioxide is crucial to a cleaner future and once captured, carbon dioxide can be compressed and safely stored. It is also a useful source for chemical manufacture. However, current processes are inefficient and require several stages of refining and extraction before a pure form of carbon dioxide is produced.
One method of capturing carbon dioxide is through molecular sieve, an ultra-fine filter system that captures a variety of molecules but that needs further filtering.
Professor Paul Webley and his team including PhD student Jin Shang and research Fellow Gang Li from the Melbourne School of Engineering, have developed a new sieve that allows carbon dioxide molecules to be trapped and stored.
"The findings published in the Journal of the American Chemical Society suggest that this new material has important applications to natural gas purification. Many natural gas fields contain excess carbon dioxide that must be removed before the gas can be liquefied and shipped, Professor Webley said.
"Because the process allows only carbon dioxide molecules to be captured, it will reduce the cost and energy required for separating carbon dioxide. The technology works on the principle of the material acting like a trap-door that only allows certain molecules to enter, he said.
Once entered, the trapdoor closes and the carbon dioxide molecules remain," said Professor Webley.
"We took a collaborative approach to this research with input from CSIRO, the Department of Materials Engineering and Mechanical Engineering at Monash University and the Australian Synchrotron.
We have a new material that is able to separate carbon, dioxide from any given stream such as power stations and from natural gas sources. While we can't change industry in a hurry, we have provided a viable bridging solution."